equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.
A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas características específicas de cada interação:[
Lagrangiana
A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por ; são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por a, b,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz.
O símbolo representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]
onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices a, b, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.
As constantes m e g controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.
Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de Wilson. Esse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.
Na mecânica analítica e a teoria do campo quântico, o acoplamento mínimo refere-se a um acoplamento entre os campos que envolve apenas a carga de distribuição e não mais multipolar momentos da distribuição de carga. Esse acoplamento mínimo está em contraste com, por exemplo, acoplamento de Pauli, o que inclui o momento magnético de um elétron diretamente no Lagrangiano.
Eletrodinâmica
Na eletrodinâmica, o acoplamento mínimo é adequado para considerar todas as interações eletromagnéticas. Momentos mais altos de partículas são conseqüências do acoplamento mínimo e o spin diferente de zero.
Matematicamente, o acoplamento mínimo é obtido subtraindo a charge () vezes o quadripotencial () do quadrimomento () no Lagrangiano ou Hamiltoniano:
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Veja o artigo de mecânica hamiltoniana para obter uma derivação completa e exemplos. (Retirado quase literalmente da Interacção Lagrangeana de Doughty, pg. 456)[1]
Inflação
Em estudos de inflação cosmológica, o acoplamento mínimo de um campo escalar, geralmente, refere-se a um acoplamento mínimo para a gravidade. Isso significa que a ação para o campo inflaton não está acoplado ao escalar de curvatura. Somente o seu acoplamento a gravidade é o acoplamento com o invariante de Lorentz medida construído a partir da métrica (em unidades de Planck):
equação Graceli estatística tensorial quântica de campos 1 / / / G [DR] = .= G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde , e utilizando o derivativo de calibre covariante.[2][3][4]
Comentários
Postar um comentário